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Physics motivation



J/¥ anomalous suppression
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> Proposed mechanisms for anomalous suppression:
= Charmonium dissociation in the QGP (E3 Matsui, Satz, PLB178 (1986) 416)
> Break-up by co-moving hadrons (£ Armesto, Capella, PLB430 (1998) 23)

o J/W¥ azimuthal anisotropy relative to the reaction plane
- could help to distinguish between these 2 mechanisms 3




Observables: v,

Anisotropy in the observed particle azimuthal distribution due
to correlations between the azimuthal angle of the outgoing
particles and the direction of the impact parameter
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Observables: v,

Anisotropy in the observed particle azimuthal distribution due
to correlations between the azimuthal angle of the outgoing
particles and the direction of the impact parameter
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Possible sources of J/¥ v,

1) Charm elliptic flow
> Flow = collective motion superimposed to thermal motion

= for J/¥ formed by cc recombination Not likely to occur at
= if c quarks are early-thermalized SPS energies

Greco, Ko, Rapp, PLB595 (2004) 202

2) cc break-up on co-moving hadrons Give rise o negative values
= More pions in-plane than out-of-plane of v, with smooth
v’ due to pion elliptic flow cen’rr'cﬁl'ry dependence

= J/¥ exiting in—plane more absorbed Heiselberg, Mattiello, PRC60 (1999) 44902

_ Give rise to positive values
3) cc break-up by Q6P hard gluons of v, with sudden onset at
= parton density azimuthally anisotropic # the centrality for which

& J/¥ exiting out-of-plane more absorbed the ggécglg%q_?gi\oenj for

dWang, Yuan, PLB540 (2002) 62
dZhu, Zhuang, Xu, PLB607 (2005) 207



Experimental setup



NA5O setup — year 2000

Study of muon pair production in Pb-Pb collisions

beam hodoscope  F

o Pb beam
& Epeam = 158 GeV/nucleon = EM calorimeter (1.1<n,<2.3)
o Beam detectors = Multiplicity Detector (1.1<n, . <4.2)
> Pb target in vacuum > Zero Degree Calorimeter (n,,,>6.3)
> thickness = 4 mm o Muon spectrometer (2.7<n,,,<3.9)

= toroidal magnet+MWPC+hodoscopes
8



Reaction plane estimation

> Electromagnetic calorimeter 2040m
&> Measures neutral (yand 70 ) E+ o7 om CTEREAN
= Made of Pb and scintillating fibers ‘siom
=~ Distance from targeft: 20cm  oom

~’Pseudorapidity coverage: 1.1<n,<2.3
& Azimuthal segmentation: 6 (60° wide) sextants
~’Radial segmentation: 4 rings

> Event plane ¥, = estimator of the reaction plane

[ 6 \
1 Z E; Sin(n b, )
Y =—tan"| =
" Z Ei cos(ne.)
\ i=l J

&n = Fourier harmonic, ¢, = central azimuth of sextant i, E{ = E; in sextant i
=’several methods to estimate event-plane resolution under study 9



Event plane direction

Electromagnetic calorimeter in the backward rapidity region
=v, of pions in the backward region is positive (NA49, WA98)

v’ pions flow in the opposite direction with respect to spectator nucleons
= Event plane ¥, directed:

v opposite to the direction of spectator nucleons in the backward hemisphere
v along the direction of spectator nucleons in the forward hemisphere

plOIlS J/\Pm] spect. nucleons

/ \

Target spect. nucleons pions

=>v, of pions in the backward region is positive (NA49, CERES)
=event plane ¥, directed in plane )

YLX

¥,
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Event plane flattening

o Event plane azimuthal distribution should be flat (isotropic)
= no preferential direction for the impact parameter

* Acceptance correction

= Flattening by weighting each sextant with the inverse of <E> measured by
that sextant ([EJ Poskanzer, Voloshin, PRC58 (1998) 62)

~>very small correction (practically uniform calorimeter azimuthal acceptance)
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Analysis techniques



Analysis strategy

> Need to separate J/¥ from background dimuons
= Background dimuons in J/¥ mass range & 5-15% (depending on
centrality)
> Two kinds of analysis

= Extract number of J/¥ in bins of azimuthal angle
v’ 2 different methods for background subtraction

= Estimate J/¥ Fourier coefficients v, and v,

v’ 2 different methods to calculate v, and v,

10 < Er < 30 50 < Er <70 | 90 < Er < 120
J /) 15556 (95.8%) | 18656 (90.9%) | 18717 (86.0%)
W 6 (0.0%) 6 (0.0%) 2 (0.0%)
DY 392 (24%)| 673 (3.3%)| 855 (4.0%)
DD 108  (0.7%) 203 (1.0%) 178  (0.8%)
COMBIN. 171 (11%) | 979  (4.8%) | 2004 (9.2%)
Background 677 (4.2%) | 1861  (9.1%) | 3039 (14.0%)
S/B 23.0 10.0 6.2
S/v'S+ B 122 130 127 13




Number of J/¥ in azimuthal bins
Method 1 = “Fitting”

> Build mass spectra of dimuons

in bins of: ) — Jvy
: 104 E o il
= centrality (E;) - Y
~2azimuthal angle relative to a0 Drell-Yan ,
the event plane (A® =@, ,-¥,) w3 [ - Open Charm £
--- Background ;

> Fit o dimuon mass spectra

=5 components
v J/¥ ¥, DY, open charm,
combinatorial background

v functional forms from Monte
Carlo simulations with detailed
description of the NA50 setup

number of 111" (events / 50 MeV/c?)

56 free parameters 1 E
v' 4 normalizations + J/ W mass and 2 3 4 5 6 5 7
width Mass (GeV/c")

~Limited by DY statistics. i



Number of J/¥ in azimuthal bins
Method 2 = “Counting”

> Build E; spectra of Opposite Sign dimuons with 2.9 < M < 3.3 GeV/c? in
bins of azimuthal angle relative to the event plane and subtract:
= Combinatorial bck ->from Like Sign dimuons in 2.9 < M < 3.3 GeV/c?

) 4
= Open Charm

~>from Opposite Sign dimuons in M > 4.2 GeV/c?
—>from Opposite Sign dimuons in 2.2 < M < 2.6 GeV/c?
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o Calculate v’ =< cos[n(® - ¥,)] >

Estimate J/¥ v,

Method 1 = “Cosine spectra”

o Build cos[n(®g;,,-¥,)] spectra of dimuons with 2.9<M<3.3 GeV/c? in E;

(p1) bins
& Subtract combinatorial bck, DY and open charm cos[n(®;.,-¥,)] spectra

& need to correct for event plane resolution to obtain v, (under investigation)
v ', always smaller than v,
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Estimate J/¥ v,

Method 2 = “Fit to NV'¥ in azimuthal bins”

o Count dimuons in 2.9<M<3.3 GeV/c? in bins of E; and AD, =P, - ¥,
> Subtract combinatorial bck, DY and open charm

o Fit with:
= dN/dAD, =A[ 1 + 2 v, cos (AD,) + 2 v, cos (2:AD,)]
= dN/dAD, =A[ 1 + 2 v, cos (2:AD,)]
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Preliminary results



Directed amsotropy (1)

Er range | Nreco(J/ ) | Nreco(T/P) [ Z006F 0 e ianes

(Gev) along \Pl opposl"'e \Pl -ZF 0. Mf N, = Opposite to theplane ¥,
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o More J/¥'s emitted "opposite to the plane

& negative J/\P v,
=>more J/¥'s in the azimuthal region where there are more pions
> Anisotropy decreases with increasing centrality

» Unexpectedly large anisotropy BUT momentum conservation
effects not taken into account

e Good agreement between the 2 analysis methods 19



Dlrected amsotropy (l)

SO{E {Tﬂ TD-:ET-:QO 'ENZI{ET{IZD

0 b 0 T 0 T OHHELHU T 2r

ST T T T
N 1 o Systematic effects being evaluated
: ] ~’No event-plane resolution correction
0oL ﬁ % H. ] >No momentum conservation correction
0.02 | ﬁ + 1 * Negative J/¥ v,
ok + # % |  &same v, sign as for pions
T TL & : = more J/¥ in the azimuthal region
-0.04 | . opposite to projectile spectator
s | o fomme ; bounce-off direction
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Elliptic anisotropy (1)

E, range | No(T/%) | Nreo(T/)
(GeV) in plane | out of plane
10-30 9100 8900
30-50 10700 10500
50-70 10700 10800
70-90 10300 9700
90-120 10900 10700

&
0.1
2

4

P

0.02

-0.02

[ © From counting
—® Fromfitting

-0.04

o Slightly more J/¥'s emitted "in plane”
& negative v, (i.e. more J/¥ observed out-of-plane) seems excluded
e Good agreement between the 2 analysis methods
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Elllptlc amsotropy (1)

SO{E {Tﬂ TD-:ET-:QO 'ENZI{ET{IZD

0

--II.JIII.JJ .
1:.4"2 0 w2 0 w2 =

AD,=0,. -V, (rad.)

- W from fits
r® from < cosAD >
O from < cosAdP > shifted bins

100120
E. (GeV)

@

Small positive J/¥ v, on average
=>more J/¥'s exiting in plane
Negative J/¥ v, excluded

~>exclude a major role for breakup by
co-movers

Systematic effects being evaluated
&*No event-plane resolution correction

Good agreement between the 2
analysis methods 22



Cross-checks: E,,. centrality bins

o EMCALO used both for event plane and for centrality determination

=E . = independent centrality estimator

&

0.1
%
é 0.08

z 6
0.0
ZN

1
™

0.02

-0.02
-0.04

o

%0'04;
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N \ O From counting
| 1 L | 1 1 L 1 1 | 1

1
C N, =Inplane'?,

r[rrr

[ N, =Out of plane ¥,

T
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_D_

- ® Standard binning

| ' I ! ] ! | ! I ! I ]
From <cosA®>

[ o Shifted bins

0 5000 10000\15000 20000 25000 30000
E, . (GeV

central events ( low E,p )

| l | | |

000 25000 30000
E, . (GeV)

75000 10000 15000

peripheral events ( high Ep,)

Similar centrality dependence as from E; analysis
= Exclude a bias from centrality selection
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Cross-checks: event-plane flattening

— A T T T T ol L S I A B R B B
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o Different choices of flattening the event plane do
not change significantly v, results
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Conclusions

o Preliminary results on J/¥ production relative o the event plane in
Pb-Pb collisions at 158 A GeV/c from NA5O experiment

= Event plane from azimuthal distribution of neutral transverse energy

=>Correction for event plane resolution not applied
v’ presently under study

> Negative J/¥ v,

=>Unexpectedly large v; BUT momentum conservation effects not taken into
account

v’ presently under study

=>More J/¥'s in the direction opposite to spectator nucleons, i.e. in the
direction where more pions go

o Positive (in-plane) J/¥ v,
= More J/¥'s exiting “in plane”

= Indicates that breakup by comovers is not the main source of J/¥
anomalous suppression

25



Backup



View in the transverse plane
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Flow in the transverse plane

Flow = collective motion of particles (due to high pressure arising from
compression and heating of nuclear matter) superimposed on top of the
thermal motion

= Flow is natural in hydrodynamic language, but flow as intended in heavy ion
collisions does not necessarily imply (ideal) hydrodynamic behaviour

Isotropic expansion of the fireball: " | y
= Radial transverse flow yL - .,
v’ Only type of flow for b=0 X / | AW

v Relevant observables: p; (my) spectra
Anisotropic patterns:

= Directed flow

X
v’ Generated very early when the nuclei penetrate each other T_, ‘@_/E ;
Z

— Expected weaker with increasing collision energy

v Dominated by early non-equilibrium processes
= Elliptic flow (and hexadecupole...)

y
v’ Caused by initial geometrical anisotropy for b #0 T_,
— Larger pressure gradient along X than along Y X

v’ Develops early in the collision ( first 5 fm/c )



In-plane vs. out-of-plane

aX X,
= 121 cost- RP>+@OS(2(¢_LPRP))+....)

v
Elliptic flow coefficient:
v,>0 In plane elliptic flow

Isotropi
SO r0< i v,<0 Out of plane elliptic flow
= v

};’; . 0.;Eﬁfil‘@£

V,=10% v}

3 4
(p-‘PRP (rad.)
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J/¥ anisotropy due to QGP

o Charmonium break p on hard gluons present in the
deconfined medium

= Gluon density in not isotropic in non central collisions due to the
almond shaped overlap region

> Sets in when the critical conditions for deconfinement are
attained

’ 0.8 |
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Wang Yuan, Phys. Lett. B540 (2002) 62 Zhu, Zhuang, Xu, Phys. lett. B607 (2005) 207



Event plane resolution

* Can not define sub-events from azimuthal sectors (sextants)
=only 6 azimuthal sextants

o Can not define sub-events from radial (rapidity) sectors (rings)
=Non-flow correlations between contiguous rings
= Different number of particles hitting each ring

° ¥, and ¥, turn out to be well correlated

o
o
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J/¥ azimuthal distribution

o J/¥ azimuthal angle from reconstructed muon momenta
1 2
APy tay
1 2
Py +py

s>azimuthal distribution not flat due to acceptance effects
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pr dependence of J/¥ anisotropy
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